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Equivalence of the channel-corrected-7-matrix and anomalous-propagator approaches
to condensation
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Any many-body approximation corrected for unphysical repeated collisions in a given condensation channel
is shown to provide the same set of equations as they appear by using anomalous propagators. The ad hoc
assumption in the latter theory about nonconservation of particle numbers can be released. In this way, the
widespread used anomalous-propagator approach is given another physical interpretation. A generalized Soven
equation follows which improves a chosen approximation in the same way as the coherent-potential approxi-
mation improves the averaged 7 matrix for impurity scattering.

DOL: 10.1103/PhysRevB.82.092501

Superconducting and Bose-Einstein condensation phe-
nomena belong to one of the most exciting macroscopic ef-
fects based on microscopic quantum physics. The theoretical
description of both phenomena is one of the major activities
in theoretical many-body physics. Superconductivity is based
on the pairing of two fermions which form a condensate
while bosons provide a one-particle Bose-Einstein conden-
sate. Both phenomena are characterized by possessing a sin-
gular channel in which the effect appears.

The self-consistent multiple scattering 7 matrix in a
many-body surrounding diverges near the critical tempera-
ture of the onset of the symmetry-broken phase, may it be
pairing condensation for fermions or Bose-Einstein conden-
sation for bosons. Though describing correctly the onset of
pairing, the 7 matrix does not provide the gap equation. This
changes if an asymmetric breaking of the self-consistency in
the T matrix is used, such that one of the two internal propa-
gators is used self-consistently and the other nonself-
consistently. Then the gap equation appears as the pole of the
T matrix. This was observed by Kadanoff and Martin! and
used later on?7, for early citations see Ref. 6. It has remained
puzzling since a seemingly worse approximation leads to
better results.

Recently it turned out that the repeated collisions with the
same particle are responsible for this artifact.* Repeated col-
lisions of two particles in the same state are unphysical since
the particles move apart from each other after the collision. If
these repeated collisions with the same state are removed
from the 7 matrix, the correct gap equation appears and the
condensate can be described without asymmetrical ad hoc
assumptions about self-consistency. The advantage of elimi-
nating only the contributions of single channels as proposed
in Refs. 4 and 5 is that the formation of pairs and their
condensation can be described within the same approxima-
tion. This has also resulted in the description of different
phases in interacting Bose systems.” Formally such form can
be derived by a systematic expansion of Feynman diagrams
connecting different channels in the sense of cummulant
expansion.®

On the other hand, there exist a well-established theory to
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describe systems with condensates in terms of anomalous
functions, for review see Ref. 9. Let us consider bosonic
particles which can form a condensate being either bosons or
paired fermions. If the system processes a macroscopic num-
ber N, of such particles in the condensate represented by
channel i, the expectation value of the creation operator ag, of
that state is very huge and to a good accuracy the creation
operators [ag,a;]=0 commute with each other as well as
with all other states.” The number of particles is considered
as nonconstant if the condensate is thought as a reservoir
since scattering off and on the condensate may create/destroy
pairs. Therefore the anomalous Green’s function Gy,
= %(Ta_kak) are nonzero besides the normal Green’s function
G11=%(Taka;§) describing the simultaneous excitation of a
pair. This ad hoc assumption leads then to the description of
the condensate and the gap equation for pairing. Please note
that the nature of the condensate remains quite different
whether it is composed of bosons or paired fermions.'”

The question is now, how the two approaches above are
related. In the first theory correcting the 7" matrix, we con-
sider only microscopic correlations while the same result is
obtained by the second approach where one assumes ad hoc
from the beginning anomalous functions. In the second ap-
proach, the symmetry of the theory concerning particle con-
servation is obviously broken while in the first approach it
remains conserving. So it seems to be worth to understand
the relation between both approaches.

The aim of the present Brief Report is to show that indeed
the first approach leads to the same structure of equations
like the second one yielding expressions for the anomalous
functions without assuming them. Indeed it will be shown
that the theory is somehow overdetermined by the second
approach in that one can work with half the number of equa-
tions if following the first procedure. In view of this, the
virtue of the first approach consists in giving the anomalous
function assumption a further microscopic meaning since
they can be derived from theory.

Let us therefore shortly sketch the structure of the first
approach. We split the self-energy into different channels,
3=3 jE j» Where we assume for simplicity that we have only
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one singular channel i where the condensate appears. The
unphysical multiple scatterings with the same channel are
concerning a single channel and vanish in the thermody-
namical limit. Therefore this deficiency does not matter in
normal matter. If we have a singular channel due to the con-
densate, however, this correction becomes essential. We have
to subtract this process, i.e., we define the subtracted propa-
gator,

Gi=G-G3,G (1)

or G":G{ _3,. Using the standard Dyson equation G51
=G~ '+3, we obtain the relation

Gi=Go+ Go(2 - 2)Gy 2)
which shows that in this propagator the own self-energy

channel is subtracted, 3'=3-3,.. Now we consider a general

T matrix which represents the self-energy as E’=Ej¢,~Tj(_}
where the channel T-matrix 7; as two-particle function is

closed by an backward propagator G. In the singular channel
we subtract the repeated interaction within this channel. This
is achieved by closing with the subtracted propagator 2,

=Ti@. Now we can rewrite the Dyson equation as

G'=G,'-3=G,' -3 -3,
=Gy' -3 - TGy

=Gy' -3 - T(G,' -3, (3)

where in the last step we have used Eq. (2). Finally we re-
write Eq. (3) to obtain the full propagator in momentum-
energy (Matsubara) representation p=(p,w,),

_ Gi'(p) =5 () |
[Go'(p) -2 (MG, (p) - 2" (p)]- Tip)

Remembering E’:E—T,CX leads immediately back to the
Dyson equation G=G,/(1-2G,). Therefore it is an exact
rewriting so far.

Now we take into account the explicit form of the free

G(p) (4)

propagator G{)l:w—ek and (_351=—w—e_k and call the
“proper” self-energy,

2up) =2"(p). (5)
Further, we observe that the 7" matrix in the singular channel

is separable!'~!3 and can be written T:(p)= = A(p)A(p) for
bosons/fermions, respectively. Now we can define the
“anomalous” self-energy as

2(p) = Alp) (6)
such that the propagator [Eq. (4)] takes the form

L+
Gy = fo+€k+ . S (7)
(w+ e +2)Nw-g-2) £ 37,

We add now an auxiliary quantity called anomalous Green’s
function
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)
G, = — = ; (8)
(w+ e +2 ) w-g-2) £ 37,

and can write in such a way the two equations in matrix form

G=G"+G">G ©)
with
G Gp Gy, O
G=| _ — ) G0= — >
G *Gyy 0 =G,
p 3
2:(_” - ) (10)
2 2

for bosons/fermions, respectively. These are exactly the
equations for anomalous propagators derived by Beliaev'*
for bosons. For fermions, these are the Nambu-Gorkov
equations.'

In other words, separating a singular channel from the
self-energy avoiding repeated collision within this channel
leads immediately to propagators which have the Beliaev
form for bosons or the Nambu-Gorkov form for fermions.
We see that adding the auxiliary quantity [Eq. (8)] is not
necessary. All information we have derived without this
quantity and it was added here simply to show that the same
structure of theory appears as provided by the approaches
with anomalous functions. In this sense the theory of anoma-
lous functions is overdetermined. We should note, however,
that the anomalous propagator G, describes the order pa-
rameter. This anomalous propagator appears as a result of the
theory here and is not assumed from the beginning as done
usually.

Now that we have clarified that the anomalous propagator
is an exact rewriting of the Dyson equation if one correct a
channel of self-energy for repeated collisions, we might ask
what kind of equation such channel-corrected self-energy
obeys. This will lead us to a generalization of the Soven
equation.'® The Soven equation was proposed to describe
impurity scattering in terms of an effective medium and re-
sulted in the coherent-potential approximation (CPA).!7-1°
This CPA improves the averaged T matrix?® with respect to
better analytic properties and a wider range of applications. It
has turned out that the averaged T matrix is the uncorrected
channel while the CPA is equivalent to the channel-corrected
approximation. Here we will present the same idea of chan-
nel correction but applied to the two-particle scattering. This
will lead to a general Soven equation which allows to im-
prove a chosen approximation scheme in the same manner as
the CPA improves the averaged 7-matrix approximation for
impurity scattering.

Let s assume in general the defining equation for the
channel T matrix in terms of the potential V and a block K,

covering both the singular channel j=i as well as the normal
channels j#i. In general this equation is a two-particle one
which is reduced to the one-particle self-energy by closing
the upper line with the backward propagating Green’s func-
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A A A = (A_A) (AL A)

FIG. 1. Proof of relation (16) for singular channel 7 matrices
which become separable. Thin lines denote the subtracted propaga-
tor (1) and thick lines the full propagator.

tion 2’=Ej#,-7-75 and for the singular channel EFE. In
the following, we will denote explicitly by which function
the upper line is closed. All other products are understood as
operator products of one-particle functions. For the above-
mentioned averaged 7-matrix approximation one has K=Gy
and a closing by G— c in terms of the impurity concentra-
tion c. In two-particle ladder approximation, one would have
the form K;=G- Gy. In the following we consider the general
block K such that any more refined approximation can be
chosen.

With Eq. (1) and E,:ﬁ we can write

1=(1-D)G™'G,+DG™'G+ G'GT.GG,  (12)

where we have added and subtracted an operator D which
will be determined later by convenience. Now it is easy to
proof with the help of the separability of the singular channel
T;= + AA that the following relation holds:

T,GG = T\GG. (13)
Indeed we have with the help of Eq. (1),

‘GGT Gy (14)

T.GGG™ =T,G -
and

1.Gi=TG-T,GX,G. (15)

Since we have the identity

T,G>.G = T.GGT,G, (16)

as shown in Fig. 1, the Eqgs. (14) and (15) are identical and
relation (13) is proved.
Therefore we can write for Eq. (12)

1=(1-D)G"'G+ (DG +G'GT.G)G,.  (17)

Multiplying Eq. (1) from the right with ﬁ , we can find
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G'GTG+3GTG=TG=VG+VKTG, (18)
where we have used Eq. (11) for the second identity. For the
last term, we define now an effective potential \7i,

V.GT:G = VKT,G (19)

with the help of which we can invert Eq. (18),

GT.G=(G"+3,-V)'VG. (20)
Using this in Eq. (17), we arrive at
1=(1-D)G'G;

+[1+ (3~ V)GT'[(1 +3,G)D - V.GD + VGGIG™'G;.
(21)

Now we choose the operator D such that the last two terms
cancel each other, i.e.,

VGG = V.GD. (22)

Using Eq. (1) in the form G™'G;=(1+%,G)™" and subtracting
from Eq. (21) the structure 1=(1-D)A™'A+B~'BD we ob-
tain finally

(1-D)(1+3,6)7's,;
=[1+C;,- V)G
X[V,GDG™' - (1+3,G)D(1+3,G)"'S,]. (23)

Together with the operator [Eq. (22)] and the effective po-

tential V; defined by Eq. (19) this is the desired generalized
Soven equation. It is written in operator form which becomes
an algebraic equation in the appropriate representation. In the
operator form it is even valid in nonequilibrium and its time
ordering can be treated, e.g., in the framework of generalized
Kadanoff and Baym formalism?! with the help the Langreth/
Wilkins rules.??

Though introduced merely for mathematical convenience,
the operator D corresponds to the concentration for impurity
scattering and the effective potential corresponds to the ef-
fective potential in CPA. Therefore, D is called concentration
operator hereafter.

Let us illustrate this with the help of special cases. Choos-
ing the averaged T-matrix approximation we have only one-
particle functions, K=Gy and the closing by the concentration

as a c-number G— ¢, such that we get from Eq. (19) 17,»=V
which gives with Eq. (22) D=c such that the standard Soven
equation!” appears

k) V) -Zp)
1+3(p)Glp)  1+[2i(p) - V(P)IG(p)
As a second, so far not known, example we give the ex-

plicit expressions for the two-particle 7 matrix. Then K
=G -Gy is a product in spatial coordinates. Fourier transform

(1-c¢) (24)

092501-3



BRIEF REPORTS

of the difference coordinates and gradient expansion reveals
then the structure [p=(p,®,)],

2i(p) Vilp) = 2i(p)
PO s 060 = ) - noee)
(25)
The concentration operator takes the form
2 V(p-p/2)G(-p)
D(p)=""—— 2P )
Vi(p) Vi(p)

noting the Hartree self-energy X and the effective potential
reads

VKT,G _TGG-VG 1 S 4(p)

S sz Gl ZGH)
TiGGy (27)
Here we have used Eq. (11) for the first equality and Eq. (13)
for the second one. The channel 7 matrix reads explicitly

‘71(19) =
T.GGy

Ez([)) = E Ti(?’pz;pJ)"' ﬁ7wp+ wp>GX(_ﬁ)~
P

(28)

It is instructive to see that introducing Eqgs. (26) and (27) into
Eq. (25) leads indeed to an identity. This is due to the fact
that we have assumed that all quantities such as 7 matrix and
self-energy are known exactly. In case that we start with an
approximation for the Green’s function or self-energy we can
use the above equation system and the generalized Soven
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form to iterate and to obtain approximations for the channel
corrected propagators and self-energies.

To summarize it was shown that the Dyson equation can
be rewritten exactly into a form containing anomalous propa-
gators and self-energies if the repeated collisions in one
channel are subtracted. The correction of the channel results
into a self-energy which obeys a generalized Soven equation
irrespective of the actually form of approximation used for
the T matrix. This derived identity allows to improve any
chosen approximation in the same way as the CPA does it
with the averaged T-matrix approximation. The suggested
procedure is to choose an approximation for the 7" matrix and
to calculate the self-consistent channel-corrected propagators
by iteration of Egs. (26) and (27) and Eq. (25). Due to the
versatile appearance of pairing and condensation phenomena
ranging from nuclear, to solid state up to plasma physics, the
systematic improvement of any approximation used and the
underlying equivalences of the different approaches might be
helpful. The superiority of the corrected 7 matrix considered
in this Brief Report consists of the fact that the situation
above and below the critical temperature, or in other words,
the physics in and outside the condensate can be described
with the help of the same theoretical approach.* First appli-
cations have shown already a better description of multiple
phases in interacting Bose gases.” Further applications of the
proposed scheme are in progress.
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